The fog comes in like a lion and goes out like a lamb. It can set off alarms and create a foggy behavior from space that could help a lot of people. Fog and low clouds as troublemakers. Fog and low stratus clouds are a hazard to public and personal transportation. Visibility under foggy conditions can be drastically reduced, creating dangerous situations for vehicles on roadways as well as airplanes. Train, boat, and other means of transportation may also be affected. From 1995 to 2005, the National Highway Traffic Safety Administration (NHTSA) found that in the U.S. each year, an average of 38,790 vehicular accidents were directly related to fog. These accidents caused 16,550 injuries and 620 deaths. In the same period, the National Transportation Safety Board (NTSB) reported an annual average of 81 airplane crashes caused by reduced visibility due to fog or fog-like, below-zero conditions. Forty-one of these accidents each caused at least 1 fatality. In addition, commercial airline time losses of billions every year from development, delays, and rerouting due to low visibility at airports due to fog and low stratus clouds.

Where are the clouds? Clouds can be found as high as 60,000 feet (18,000 m) in the atmosphere, have four times the spatial resolution and can be used as a reference point for climate models. They can also be found over 11 miles high. They can also be found due to clouds, fog, or low ceiling. Sixty-one of these clouds, fog, or low ceiling cases were found to be due to clouds, fog, or low ceiling, that the Advancement Baseline Image (ABI) will cover the same area five times faster than the current Geostationary Operational Environmental Satellites (GOES-R) and polar-orbiting (JPSS) weather satellites. Their instrument technologies and new data processing techniques on the ground will provide dozens of new products more timely and accurate than ever before. Visit these websites to learn more: GOES-16: https://www.goes.nsstc.nasa.gov NOAA Satellite and Information Service: http://www.stl.noaa.gov/ NSts: NASA/NOAA/NWS and Earth Science for middle and upper education: http://nssdc.gsfc.nasa.gov Space Place (NASA Science Mission Directorate website for upper elementary and other ages): http://spaceplace.nasa.gov/weather

Abbreviations
ABS: Advanced Baseline Image (in GOES-R)
CGIS: Cooperative Institute for Meteorological Satellite Education and Research (CI-MSER)
GOES-R: Geostationary Operational Environmental Satellite—R Series
IFR: Instrument Flight Rules
JPSS: Joint Polar-Orbiting Satellite System
NOAA: National Oceanic and Atmospheric Administration
SNPP: Suomi National Polar-Orbiting Partnership
VFI: Visible Flight Rules
VIRS: Visible Infrared Imaging Radiometer Suite (on JPSS satellites, including the SNPP satellite)
The fog comes in like a lion and goes out like a lamb. It can set off alarms and create a foggy behavior from space that could help a lot of people. Fog and low clouds as troublemakers. Fog and low stratus clouds are a hazard to public and personal transportation. Visibility under foggy conditions can be drastically reduced, creating dangerous situations for vehicles on roadways as well as airplanes. Train, boat, and other means of transportation may also be affected. From 1995 to 2005, the National Highway Traffic Safety Administration (NHTSA) found that in the U.S. each year, an average of 38,790 vehicular accidents were directly related to fog. These accidents caused 16,550 injuries and 620 deaths. In the same period, the National Transportation Safety Board (NTSB) reported an annual average of 81 airplane crashes caused by reduced visibility due to fog or fog-like, below-zero conditions. Forty-one of these accidents each caused at least 1 fatality. In addition, commercial airline time losses of billions every year from development, delays, and rerouting due to low visibility at airports due to fog and low stratus clouds.

Where are the clouds? Clouds can be found as high as 60,000 feet (18,000 m) in the atmosphere, have four times the spatial resolution and can be used as a reference point for climate models. They can also be found over 11 miles high. They can also be found due to clouds, fog, or low ceiling. Sixty-one of these clouds, fog, or low ceiling cases were found to be due to clouds, fog, or low ceiling, that the Advancement Baseline Image (ABI) will cover the same area five times faster than the current Geostationary Operational Environmental Satellites (GOES-R) and polar-orbiting (JPSS) weather satellites. Their instrument technologies and new data processing techniques on the ground will provide dozens of new products more timely and accurate than ever before. Visit these websites to learn more: GOES-16: https://www.goes.nsstc.nasa.gov NOAA Satellite and Information Service: http://www.stl.noaa.gov/ NSts: NASA/NOAA/NWS and Earth Science for middle and upper education: http://nssdc.gsfc.nasa.gov Space Place (NASA Science Mission Directorate website for upper elementary and other ages): http://spaceplace.nasa.gov/weather

Abbreviations
ABS: Advanced Baseline Image (in GOES-R)
CGIS: Cooperative Institute for Meteorological Satellite Education and Research (CI-MSER)
GOES-R: Geostationary Operational Environmental Satellite—R Series
IFR: Instrument Flight Rules
JPSS: Joint Polar-Orbiting Satellite System
NOAA: National Oceanic and Atmospheric Administration
SNPP: Suomi National Polar-Orbiting Partnership
VFI: Visible Flight Rules
VIRS: Visible Infrared Imaging Radiometer Suite (on JPSS satellites, including the SNPP satellite)

The satellite is designed to observe the earth’s atmosphere, have four times the spatial resolution and can be used as a reference point for climate models. They can also be found over 11 miles high. They can also be found due to clouds, fog, or low ceiling. Sixty-one of these clouds, fog, or low ceiling cases were found to be due to clouds, fog, or low ceiling, that the Advancement Baseline Image (ABI) will cover the same area five times faster than the current Geostationary Operational Environmental Satellites (GOES-R) and polar-orbiting (JPSS) weather satellites. Their instrument technologies and new data processing techniques on the ground will provide dozens of new products more timely and accurate than ever before. Visit these websites to learn more: GOES-16: https://www.goes.nsstc.nasa.gov NOAA Satellite and Information Service: http://www.stl.noaa.gov/ NSts: NASA/NOAA/NWS and Earth Science for middle and upper education: http://nssdc.gsfc.nasa.gov Space Place (NASA Science Mission Directorate website for upper elementary and other ages): http://spaceplace.nasa.gov/weather

Abbreviations
ABS: Advanced Baseline Image (in GOES-R)
CGIS: Cooperative Institute for Meteorological Satellite Education and Research (CI-MSER)
GOES-R: Geostationary Operational Environmental Satellite—R Series
IFR: Instrument Flight Rules
JPSS: Joint Polar-Orbiting Satellite System
NOAA: National Oceanic and Atmospheric Administration
SNPP: Suomi National Polar-Orbiting Partnership
VFI: Visible Flight Rules
VIRS: Visible Infrared Imaging Radiometer Suite (on JPSS satellites, including the SNPP satellite)